Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.

نویسنده

  • Zhaoyan Zhang
چکیده

Maintaining a small glottal opening across a large range of voice conditions is critical to normal voice production. This study investigated the effectiveness of vocal fold approximation and stiffening in regulating glottal opening and airflow during phonation, using a three-dimensional numerical model of phonation. The results showed that with increasing subglottal pressure the vocal folds were gradually pushed open, leading to increased mean glottal opening and flow rate. A small glottal opening and a mean glottal flow rate typical of human phonation can be maintained against increasing subglottal pressure by proportionally increasing the degree of vocal fold approximation for low to medium subglottal pressures and vocal fold stiffening at high subglottal pressures. Although sound intensity was primarily determined by the subglottal pressure, the results suggest that, to maintain small glottal opening as the sound intensity increases, one has to simultaneously tighten vocal fold approximation and/or stiffen the vocal folds, resulting in increased glottal resistance, vocal efficiency, and fundamental frequency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steady Flow Through Modeled Glottal Constriction

The airflow in the modeled glottal constriction was simulated by the solutions of the Navier-Stokes equations for laminar flow, and the corresponding Reynolds equations for turbulent flow in generalized, nonorthogonal coordinates using a numerical method. A two-dimensional model of laryngeal flow is considered and aerodynamic properties are calculated for both laminar and turbulent steady flows...

متن کامل

A computational study of the effect of vocal-fold asymmetry on phonation.

Unilateral laryngeal paralysis leads to tension imbalance and hence to asynchronous movements between the two vocal folds during phonation. In the current study, a computational model of phonation that couples a two-mass model of the vocal folds with a Navier-Stokes model of the glottal airflow, has been used to examine the dynamics of vocal fold configurations with tension imbalance and its im...

متن کامل

The effects of frequency and intensity level on glottal closure in normal subjects.

The degree of glottal closure during phonation has an influence on voice quality and it is related to the robustness of the voice source. To quantify glottal closure a frame of reference was created by investigating 47 healthy men and 92 healthy women with no vocal complaints using videolaryngostroboscopy. Observing recorded images the degree of glottal closure was rated with a percentage. Resu...

متن کامل

Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.

The goal of this study is to better understand the cause-effect relation between vocal fold physiology and the resulting vibration pattern and voice acoustics. Using a three-dimensional continuum model of phonation, the effects of changes in vocal fold stiffness, medial surface thickness in the vertical direction, resting glottal opening, and subglottal pressure on vocal fold vibration and diff...

متن کامل

Physical mechanisms of phonation onset: a linear stability analysis of an aeroelastic continuum model of phonation.

In an investigation of phonation onset, a linear stability analysis was performed on a two-dimensional, aeroelastic, continuum model of phonation. The model consisted of a vocal fold-shaped constriction situated in a rigid pipe coupled to a potential flow which separated at the superior edge of the vocal fold. The vocal fold constriction was modeled as a plane-strain linear elastic layer. The d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 137 2  شماره 

صفحات  -

تاریخ انتشار 2015